以下の性質を持つ自然数 \(a\) が無限個存在することを示せ。 (性質): \(z=n^4+a\) はどの自然数 \(n\) に対しても素数ではない。 任意の \(n\) に対してある \(n\) の整式が合成数(=続きを読む “四乗数と素数 (1969年 第11回IMO ルーマニア大会 第1問)”
日別アーカイブ:2022年1月24日
歴史の幕開け (1959年 第1回 IMO 第1問)
任意の自然数 \(n\) について, \(\displaystyle\frac{21n+4}{14n+3}\) は既約分数である事を証明せよ 60年以上の歴史を持つIMOの第1回大会は東欧ルーマニアにて開催されました続きを読む “歴史の幕開け (1959年 第1回 IMO 第1問)”