確率論と座標 (2019年 浜松医科大)

 確率と平面座標を融合させた面白い切り口の問題です。 解答  事象AとBが互いに独立であるという事は「P(A∩B) = P(A)P(B)」が成立する事と互いに同値です。従ってベン図を利用して点Q及びRの座標をP(A), 続きを読む “確率論と座標 (2019年 浜松医科大)”

和算と算額 (2017年 慶応義塾大・環境情報)

 算額とは絵馬や額などに和算(狭義には江戸時代の日本独自に発達した数学を指す)の問題や解答を書き込み、それらを神社や仏閣に奉納したものを指します。元々は学業成就を記念して奉納されたとされている算額ですが、一方で和算愛好家続きを読む “和算と算額 (2017年 慶応義塾大・環境情報)”

正二十面体を考える (2017年 京都府立医科大・改題)

 正二十面体の体積という興味深い題材を扱っている本問ですが、問題文中に図が存在しないため正二十面体の概形を自力でイメージする必要があります。  大学入試ではなじみの薄い空間幾何分野の問題も含まれており、類題経験の無い受験続きを読む “正二十面体を考える (2017年 京都府立医科大・改題)”

正10角形と等積変形 (2021年JMO 予選 第二問)

 予選の2問目はJMO恒例の平面図形問題です。正十角形から切り出された2つの図形の面積の和を求める問題ですが、とある事実に気が付いてしまえば計算は殆ど必要ありません。 解答  正十角形の頂点をA~J、中心をOとします。下続きを読む “正10角形と等積変形 (2021年JMO 予選 第二問)”

正九角形の対角線 (2012年 早稲田大・人間科学)

 正九角形の対角線というマニアックな題材を取り扱った問題です。本問は様々なアプローチが考えられますが、指定通りの形式(a + bcos20°)で解答するには少々苦労させられるかもしれません。 解法1 (二等辺三角形を利用続きを読む “正九角形の対角線 (2012年 早稲田大・人間科学)”

ブラーマグプタの公式 (2017年 大阪教育大)

 ある三角形の3辺の長さがa, b, cであるとき、面積Sは以下の式で与えられます。   これはヘロンの公式と呼ばれ、紀元1世紀頃(諸説あり)にギリシア人数学者ヘロンにより提唱されたものです。三角形の場合は3辺の長さが定続きを読む “ブラーマグプタの公式 (2017年 大阪教育大)”

JMO2020 予選第六問

 第2問に続いて平面図形(面積)からの出題です。前問までに比べると難易度は上昇しており、予選突破を目指す上では鍵となる一問です。  実は問題文中で与えられている図は正確ではありません(定規で確認するとわかりますが、最も大続きを読む “JMO2020 予選第六問”