素数であるという事 (2021年 東京学芸大)

 素数絡みの整数問題は大学入試において頻出であり、本問もそうした問題の一つです。n, kと2つの文字について同時に考える必要がある上に誘導も無い為、素数や整数に対する実戦経験がものを言います。 解答  自然数n, kに対続きを読む “素数であるという事 (2021年 東京学芸大)”

素数とエラトステネスの篩 (2021年 一橋大)

 京大数学のお株を奪うような非常にシンプルかつ興味深い設問です。  Wikipediaに掲載されている情報によれば1000以下の素数は全部で168個存在するようですが、円周率の桁宜しく素数を丸暗記しているような猛者でもな続きを読む “素数とエラトステネスの篩 (2021年 一橋大)”

素数を使い倒すべし (1995年 京大・理系)

 僅か2行の問題文に4つの文字がひしめいており、多くの受験生は最初の一手を打つだけでも苦労したと思われます。本問ではp及びdが素数であるという事実に着目し、素数としての性質を最大限に利用する必要があります。 解答 ① a続きを読む “素数を使い倒すべし (1995年 京大・理系)”

n進法絡みの整数問題 (2016年 京大・文系)

 通常の感覚(十進法)であれば上記の等式は当然成立しませんが、ある自然数nに対してn進法で考えれば成立するようです。  本問の目的はそのnの値を決定する事であり、n進法に関する理解力が問われます。 解答  まずはn進法で続きを読む “n進法絡みの整数問題 (2016年 京大・文系)”

レピュニット数の性質 (2008年 東大・理系)

 各桁の数が全て1であるような自然数はレピュニット数(Repunit)と呼ばれ、入試問題でも整数問題や数列絡みで時々登場します。n桁のレピュニット数は初項1、公比10の等比数列の和として見做すことが出来る為、問題文のよう続きを読む “レピュニット数の性質 (2008年 東大・理系)”

黒板の数字の行方 (2021年 JMO予選 第四問)

 四問目は最初に与えられた数からルールに従って次々と新しい数を生成するという、数オリではよく見かける形式の整数問題です。これまでの3問と比べると難易度は一気に上がる印象で(第二問、第三問については近日中に記事を作成する予続きを読む “黒板の数字の行方 (2021年 JMO予選 第四問)”

整数問題における指数関数の捉え方②(2016年 一橋大)

 変数はxのみですが与えられた方程式をxについて解くことは難しそうです。与えられた方程式は両辺に指数関数を含みますが、各々の底の大小関係に着目する事が第一歩となります。 解答  与えられた方程式は「6・27x + 1 =続きを読む “整数問題における指数関数の捉え方②(2016年 一橋大)”

整数問題における指数関数の捉え方① (2009年 日本数学オリンピック本選 第一問)

 JMO(日本数学五輪)の本選は例年5問の記述式問題から構成され(予選は12問の短答式)、試験時間は4時間に及びます(予選は3時間)。各問題の難易度はオリンピックの名に恥じぬ高さを誇り、2完も出来れば国際五輪の代表選考に続きを読む “整数問題における指数関数の捉え方① (2009年 日本数学オリンピック本選 第一問)”

二数の和が自然数となる条件 (2016年 北海道大・文系)

 文系向けに出題された本問ですが、文理共通問題として出題しても決して見劣りしない難易度となっています。問題文から「与式 = m (m: 自然数)」と置きたくなるかもしれませんが、未知数が増えるばかりで埒があきません。  続きを読む “二数の和が自然数となる条件 (2016年 北海道大・文系)”

複素数絡みの整数問題 (2000年 一橋大学)

 素直に考えるのであれば与えられた関係式「w2z = 1 + 18i」の左辺を展開して両辺の係数を比較する所ですが、これにより得られる等式は非常に複雑でここから更なる情報を得ることは困難を極めます。  そこで元々の関係式続きを読む “複素数絡みの整数問題 (2000年 一橋大学)”